

Asignatura: ELECTRÓNICA BÁSICA 600IND

Semestre: 6° Enero-Junio 2024 Docente: Carlos Esquivel Marín **Martes 15:45** - 214 MM **lueves 15:45** - LEL1 (Lab. de Electrónica 1)

INFORMACIÓN DE LA ASIGNATURA

En la materia de electrónica básica es muy importante desarrollar el interés por innovar dispositivos electrónicos cuidando y respetando el medio ambiente aplicando las normas de seguridad y calidad comprobando experimentalmente los conceptos teóricos de los dispositivos electrónicos.

Descripción

Es muy importante porque al alumno le permite llevar a cabo la demostración tanto simulada como experimental de los conceptos fundamentales relacionados con la electrónica básica.

Objetivos

Analizar el funcionamiento de los dispositivos electrónicos semiconductores básicos, para la valoración de sus aplicaciones de acuerdo con sus características y requerimientos específicos

Capacidades y habilidades que desarrollar

Desarrollar capacidades y habilidades de experimentación, medición y diseño de circuitos eléctricoselectrónicos en requerimientos específicos

Prerrequisitos

Conocimientos básicos de electricidad y magnetismo

Temario

I.MATERIALES SEMICONDUCTORES.

- 1. Conductores, aislantes, superconductores y semiconductores.
- 2. Niveles de energía y teoría de bandas.
- 3. Semiconductores intrínsecos y extrínsecos.
- 4. Semiconductor tipo P y tipo N.

II. DIODOS.

- La unión PN.
- 2. Simbología y modelo señal grande e ideales.
- 3. Tipos de diodos: rectificadores, de señal, zener y LED.
- 4. Circuitos con diodos: rectificador de media onda y onda completa, recortador, fijador de tensión, compuertas lógicas y reguladores de voltaje, etc.

III. TRANSISTORES: BIPOLAR DE JUNTURA Y DE EFECTO DE CAMPO.

- 1. Configuración base, emisor y colector común del BJT.
- 2. Curvas características de entrada y salida del BJT.
- 3. Circuitos de aplicaciones del transistor BJT: interruptores y amplificadores.
- 4. Estructura y funcionamiento del Transistor de Efecto de Campo de Unión (JFET) y simbología.
- 5. FET como elemento de conmutación.
- Estructura del transistor de efecto de campo semiconductor metal-oxido (MOSFET de agotamiento y MOSFET de enriquecimiento).
- 7. Estructura y funcionamiento del transistor CMOS.
- 8. Circuitos de aplicaciones.

IV. OTROS DISPOSITIVOS.

- 1. El rectificador controlado de silicio (SCR), curvas características y aplicaciones.
- 2. El TRIAC, curvas características y aplicaciones.

3. El DIAC, curvas características y aplicaciones.

Construcción de la calificación final

Sumativa (Analítica):

3 Parciales 60%

Prácticas y

Tareas 20%

Proyecto final 20%

Total 100%

Fechas importantes

Verificar las fechas de exámenes y proyectos finales en el plan de cátedra, así como en moodle.

De la asistencia y puntualidad

- 1. La entrada a clase es en punto.
- 2. Después de pasada lista de asistencia se registra como retardo
- 3. Menos de 80% de asistencia en el curso, amerita examen extraordinario (5)
- 4. Menos de 60% de asistencia en el curso, amerita "Sin Derecho" (SD)
- 5. El redondeo de la calificación final será aplicado a partir de 0.60.
- 6. Cualquier calificación final debajo de 6.00 se traduce como 5 (extraordinario)
- 7. Se recibirán justificantes hasta 1 semana después de cometida la última falta.
- 8. Cualquier documento debe ser entregado en formato PDF.
- 9. Cualquier documento, debe escribirse de acuerdo al <u>estilo de publicación APA</u> en su última versión.

Del comportamiento en clase

Comportamiento apropiado en clase con respeto, excelente trato y puntualidad.

De los exámenes

Los exámenes consistirán en la construcción tanto teórica como práctica que integre los conocimientos adquiridos durante el curso.

De las tareas, prácticas y exposiciones

Toda tarea y práctica deben entregarse puntualmente y a tiempo en la plataforma de moodle

Trabajos de investigación

- 1. El proyecto final consistirá en la construcción virtual que integre los conocimientos adquiridos durante el curso.
- 2. El proyecto considera para la calificación final, la construcción del circuito y su funcionamiento adecuado, verificado algunas mediciones.
- 3. La entrega final del proyecto se realizará en la fecha estipulada.
 - 4. No hay entrega atrasada de proyectos.
 - 5. El reporte del proyecto debe incluir la justificación y evidencia de que se trata de un proyecto innovador, sustentable y que optimiza recursos materiales y humanos.

BIBLIOGRAFÍA RECOMENDADA

- + Boylestad, Robert L. & Luis Nashelsky (2012). Electronic devices and circuit. USA: Ed. Prentice Hall
- + Mohan, Ned (2011). Power electronics: a first course. USA: Ed. Wiley.
- + Rashid, Muhammad (2010). Power electronics handbook. USA: Ed. Butterworth-Heinemann.

