

Asignatura: INTRODUCCIÓN A LOS COMPONENTES

MECATRÓNICOS 200AB

Semestre: 2° Agosto-Diciembre, 2023 Docente: Manuel Eladio Hunter Sánchez Lunes **08:45** - 215 Viernes **08:45** - 212

INFORMACIÓN DE LA ASIGNATURA

Esta asignatura forma parte del plan de estudio de la ingeniería mecatrónica, es la primera materia de la línea curricular de Robótica Industrial y las materias de automatización industrial.

Atributos de egreso

- Atributo 2 nivel Inicial: Aplicar, analizar y sintetizar procesos de diseño de ingeniería
- Atributo 6 nivel Inicial: Reconocer la necesidad permanente de conocimiento adicional

Descripción

Nombre de la materia: introducción a los componentes mecatrónicos

Horas a la semana: dos secciones de 1.5 horas cada una.

Objetivos

Al concluir el curso, el alumno será capaz de:

- · Identificar los diferentes componentes que integran un sistema mecatrónico clásico, para seleccionar el más adecuado a las necesidades de un proyecto real.
- Integrar diversos tipos de sensores y actuadores en el desarrollo de sistemas mecatrónicos básicos, así como proponer soluciones mecatrónicas a nivel conceptual, para automatización de procesos industriales de producción.

Capacidades y habilidades que desarrollar

- Análisis de componentes para sistemas mecatrónicos: eléctrico, electrónico, mecánico, sistemas computacionales y sistemas de control.
- Resolución de ejercicios, identificando soluciones mecatrónicas.
- Prácticas de programación de controladores básicos en sistemas embebidos.
- Análisis y discusión grupal sobre los conocimientos necesarios para aplicaciones avanzadas de sistemas industriales electromecánicos y mecatrónicos.
- Desarrollo de un proyecto multidisciplinario básico, integrando sensores, actuadores, sistemas de control y/o comunicación inalámbrica de datos.
- Búsqueda de información de sistemas embebidos: microcontroladores y computadoras, con sus características y prestaciones.
- Búsqueda de información sobre diversos sensores y actuadores con un enfoque de necesidad-solución.

Prerrequisitos

Temario

I. INTRODUCCIÓN A LA MECATRÓNICA.

- 1. Conformación de mecatrónica.
- 2. Componentes eléctricos y electrónicos: circuitos básicos y semiconductores.
- 3. Componentes mecánicos: máquinas y mecanismos.
- 4. Componentes de control.

5. Sistema de control básico (sensor - actuador).

II. INTRODUCCIÓN A LOS SISTEMAS EMBEBIDOS.

- 1. Microcontroladores y tarjetas de desarrollo.
- 2. Programación de sistemas de control básicos.
- 3. Computadoras embebidas.

III. SENSORES.

- 1. Introducción a los sensores y aplicaciones en la industria.
- 2. Resistivos y encoders: potenciómetros y táctil, entre otros.
- 3. Ópticos: LDR, infrarrojos, de rango y otros.
- 4. Sensores capacitivos, inducción y ultrasónicos.
- 5. Sensores avanzados: acelerómetros, magnetómetros y IMU.
- 6. Integración de sensores.

IV. ACTUADORES.

- 1. Introducción a los actuadores y aplicaciones en la industria.
- 2. Eléctricos: motores DC, servomotores, entre otros.
- 3. Neumáticos: pistones y electroválvulas.
- 4. Ejemplos de mecanismos y máquinas simples con actuadores.

V. INTRODUCCIÓN A LA AUTOMATIZACIÓN INDUSTRIAL.

- 1. Introducción al PLC (Controlador Lógico Programable).
- 2. Diagramas Ladder y lógica de escalera.
- 3. Introducción a robots manipuladores.

- Introducción a los robots móviles.
- 5. Análisis de las TIC's utilizadas en la industria.

VI. COMUNICACIÓN INALÁMBRICA.

- 1. Introducción a la telecomunicación y comunicación en sistemas embebidos.
- 2. Protocolos y selección: Bluetooth; Zigbee; WIFI.
- 3. Integración de comunicación en sistemas mecatrónicos.
- 4. Redes de sensores e introducción al Internet de las Cosas

Construcción de la calificación final

Para tener derecho a Calificación Final Aprobatoria, el alumno deberá cumplir con el 80% mínimo de asistencia.

- Si la asistencia del alumno es menor al 80% y mayor o igual al 60% su calificación será 5.
- Si la asistencia del alumno es menor al 60% será motivo de NP (No Presentó).

Calificación Mínima Aprobatoria: 6.0. Calificación No-Aprobatoria <= 5.99 =5.

La calificación final se establece de la forma siguiente:

Instrumento de evaluación	Porcentaje	Acumulado
Exámenes	44%	44%
Evaluación (360)	6%	50%
Tareas	30%	80%
Proyecto Final	20%	100%

La Salle

SYLLABUS | FACULTAD DE INGENIERÍA

Fechas importantes

Las fechas de exámenes y entregas se definirán específicamente de acuerdo con el avance del programa. Se pueden tomar como referencia las que se presentan en el plan de cátedra.

De la asistencia y puntualidad

- · La asistencia se tomará a más tardar 10 minutos de haber iniciado la sesión.
- El alumno tendrá 10 minutos de tolerancia para entrar al salón de clases.
- · La conducta durante la clase estará basada en un código de ética y honor.
- Para el mejor desempeño de las actividades y por la seguridad de todos, es importante que el salón se encuentre limpio y ordenado, en talle se debe de vestir con bata de laboratorio.
- Es derecho y obligación del alumno hacer cualquier pregunta que aclare las dudas inmediatas del tema desarrollado en clase.

Del comportamiento en clase

- · El alumno deberá mostrar siempre respeto hacia los demás.
- · No se permite dormir durante el desarrollo de la clase.
- Está prohibido el uso de videojuegos portátiles, juegos en general y cualquier equipo electrónico que funja como distractor.
- El teléfono celular debe estar en modo silencio o vibrador y solo puede ser usado para contestar llamadas que considere tienen mayor prioridad de la clase y lo harán fuera del salón de clases.
- · El uso de computadora en clase está sujeto al requerimiento de la misma.

La Salle

SYLLABUS | FACULTAD DE INGENIERÍA

De los exámenes

En ninguna circunstancia se permitirá la salida del salón de clases durante el desarrollo de los Exámenes, cualquier pendiente deberá resolverse antes o después de la aplicación de la evaluación. Presentación de los exámenes:

- · Los exámenes deberán presentarse en forma limpia y ordenada.
- Deberán desarrollarse en la secuencia correspondiente.
- · No se aceptan exámenes con problemas en desorden o en partes.
- Deberán escribirse con lápiz o portaminas, subrayándose y escribiéndose los resultados con tinta.
- · Cada una de las páginas utilizadas deberán estar numeradas y referenciadas al número total de páginas entregadas. Además, deberá contener cada una el nombre del alumno.
- · Por ningún motivo se aplicarán exámenes especiales ni fuera del horario o fecha establecida.
- · El desacato a estos puntos será sancionado con la anulación de las posibles respuestas.
- Los exámenes que se soliciten sean enviados a la dirección de correo electrónico, deberán estar en un solo archivo, en formato PDF.

De las tareas, prácticas y exposiciones

Las tareas deberán ser presentadas en forma limpia y ordenada.

Todas las tareas se deberán entregar en la fecha y hora acordada. Por ningún motivo se aceptan tareas fuera de tiempo.

Deberán entregarse en formato electrónico, en PDF, salvo que, por la naturaleza de esta, no sea posible o cuando el profesor así lo solicite.

Cualquier tarea formal deberá incluir las referencias bibliográficas correspondientes (en caso de faltar la evaluación será CERO) y entregarse el día señalado en el manejador de contenido Moodle, de no ser así, la calificación será sobre 8.

El nombre del archivo seguirá la siguiente nomenclatura:

Práctica # // CLAVE LA SALLE // Apellido Paterno Apellido Materno Nombres, ejemplos:

Práctica 1 // 071610 // Hunter Sánchez Manuel Eladio

Tarea 1 // 071610 // Hunter Sánchez Manuel Eladio

Simulación 1 // 071610 // Hunter Sánchez Manuel Eladio

Portafolio // 071610 // Hunter Sánchez Manuel Eladio

Proyecto Final // 071610 // Hunter Sánchez Manuel Eladio

Todas las actividades se entregan de manera personal, aunque la actividad sea en equipo. La entrega se considerará completa cuando se encuentre el archivo editable y PDF cargados en Moodle.

La inasistencia a una sesión de laboratorio y/o practica también ocasiona que no se reciba el reporte correspondiente y por lo tanto que pierda la evaluación total de la practica correspondiente.

Trabajos de investigación

El proyecto por realizar para la materia deberá ser elaborado durante todo el semestre por lo que se entregarán tres reportes que corresponderán a los avances.

Primer reporte: Marco teórico, modelo cinemático, cinemática directa y cinemática inversa.

Segundo reporte: Simulación en 3D y piezas en formato STL.

ASPECTOS POR EVALUAR

Porcentaje

Reportes Parciales 30%
Reporte Final 15%
Proyecto Funcional (entrega y presentación) 55%
TOTAL 100%

BIBLIOGRAFÍA RECOMENDADA

- Bolton, W. (2017). *Mecatrónica: sistemas de control electrónico en la ingeniería mecánica y eléctrica: un enfoque multidisciplinario.* México: Alfaomega.
- Corona, L. (2019). Sensores y actuadores: aplicaciones con Arduino. México: Patria.
- Monk, S. (2017). *Hacking Electronics: Learning Electronics with Arduino and Raspberry Pi.* México: McGraw-Hill.

