

Asignatura: INGENIERÍA DE MATERIALES AVANZADA

800IND

Semestre: 8° Enero-Junio 2024 Docente: Francisco Sánchez Pérez

INFORMACIÓN DE LA ASIGNATURA

Bienvenidos al curso de Ingeniería de Materiales Avanzada. En el presente semestre se verán temas relacionados con los avances científico-tecnológicos en el área de Materiales, ampliando los conocimientos en materiales poliméricos y cerámicos.

Descripción

Este curso se apoya de manera importante en el desarrollo de prácticas en el laboratorio de materiales y en la sala de cómputo, por lo cual es necesario que, en un primer momento, el profesor coordine y supervise la realización de las mismas, a fin de que pueda proporcionar oportunamente la retroalimentación pertinente que apoye el proceso de adquisición de las habilidades correspondientes, y posteriormente motive a los alumnos a realizar ejercicios prácticos en las instalaciones, fuera de los horarios de clase, con el propósito de reforzar el aprendizaje.

Objetivos

Ø Seleccionar los materiales adecuados para diversas aplicaciones específicas en la ingeniería automotriz, aeroespacial, biomédica y energética, a partir del análisis técnico de sus características y propiedades específicas.

Capacidades y habilidades que desarrollar

El trabajo académico del programa está planeado bajo la modalidad de **curso-taller**, por lo que sus actividades deberán organizarse tanto en función de la revisión y el análisis de contenidos de carácter teórico, como de su vinculación con la práctica, a fin de que los alumnos "aprendan haciendo" de manera individual o grupal, a través de la realización de acciones de diagnóstico, diseño, intervención, pronóstico o evaluación, vinculadas a proyectos. Por lo anterior, el profesor deberá combinar la exposición de las temáticas con la coordinación y supervisión de actividades orientadas a desarrollar habilidades derivadas de métodos, técnicas y procedimientos específicos.

Prerrequisitos

Mecánica de Materiales; Ingeniería de Materiales, Procesos Industriales de Manufactura.

Temario

- I. MATERIALES PARA INGENIERÍA. PANORAMA ACTUAL
 - 1. Esquema del desarrollo de los materiales modernos.
 - 2. Características y principales aplicaciones de los materiales para ingeniería de más reciente creación: polímeros con reforzamiento fibroso, estructuras con base de carbono, metales reforzados, espumas.
- II. CARACTERÍSTICAS DE LOS MATERIALES COMPUESTOS
 - 1. Comportamiento ante la tensión y compresión.
 - 2. El esfuerzo de falla como función de la cantidad de reforzamiento en materiales con reforzamiento fibroso.
 - 3. Comportamiento ante la fatiga: delaminación.
 - 4. Procesos comunes para la fabricación de materiales compuestos.
 - 5. Aplicaciones comunes de los materiales compuestos.

III. PROPIEDADES FÍSICAS DE LOS MATERIALES PARA INGENIERÍA

- 1. Propiedades térmicas: dilatación térmica, conductividad térmica.
- 2. Propiedades electromagnéticas: conductividad eléctrica, permeabilidad magnética.
- 3. Semiconductores y superconductores.
- 4. Compatibilidad biológica e impacto ambiental.
- 5. Fenómenos de degradación: fatiga y corrosión.

IV. CERÁMICOS Y POLÍMEROS PARA INGENIERÍA

- 1. Características mecánicas y físicas de cerámicas para ingeniería.
- 2. Características mecánicas y físicas de polímeros para ingeniería.
- 3. Comportamiento mecánico de cerámicos y polímeros.
- 4. Procesamiento de cerámicos y polímeros.

V. PANORAMA DE LAS APLICACIONES DE LOS MATERIALES MODERNOS PARA INGENIERÍA

- 1. Ingeniería aeroespacial y automotriz.
- 2. Ingeniería biomédica.
- 3. Ingeniería energética.
- 4. Otras aplicaciones de vanguardia.
- 5. Perspectivas futuras

Construcción de la calificación final

La calificación se construye de la siguiente forma:

1er parcial 15% examen 20% 2do parcial examen 20% 3er examen parcial Prácticas y Trabajo de Investig. 20% **Proyecto** 25%

Total 100 %

La calificación final del alumno se conformará de la suma de los porcentajes citados, sólo en los casos que la calificación esté ponderada por 0.6 y sea aprobatoria, subirá a la calificación inmediata, ejemplo: sí el alumno obtiene Calificación de 6.59 será 6.0, sí el alumno obtiene calificación de 6.60 obtendrá 7.0

Aquel alumno que obtenga calificación de 5.99 obtendrá como calificación final 5.0

Fechas importantes

Inicio de cursos: 22 de enero

Syllabus / Plan de cátedra: 29 de enero

Día de la Comunidad 22 de febrero

JITi2024 20 de marzo

Semana Santa/Pascua: 25 marzo - 07 de abril

Evaluaciones finales: 21 - 30 de mayo => $\frac{28}{}$

Fin de semestre: 31 de mayo

Evaluaciones extraordinarias: 10 - 14 junio

De la asistencia y puntualidad

Puntualidad: se tendrá una tolerancia de 5 minutos para tener derecho a entrar a clase.

Asistencia: Para tener derecho a presentar exámenes deberá tener el 80% de las asistencias.

Del comportamiento en clase

En clase se debe tener cuidado con aspectos como la disciplina, puntualidad y asistencia.

Disciplina: al no tener un adecuado comportamiento en clase, se tendrá una amonestación verbal por parte del profesor, si continua el comportamiento se pudiera reconvenir al alumno al término de clase y en caso mayor de suspensión temporal hasta que no haya platicado con su respectivo jefe de carrera.

De los exámenes

- 1.- Los exámenes se presentarán en forma ordenada, siempre con lápiz o portaminas, subrayándose los resultados con tinta en un recuadro.
- 2.- Los problemas deberán desarrollarse en la secuencia que corresponda. *No se aceptarán exámenes* con problemas en desorden o en partes.
- 3.- En exámenes de opción múltiple, se deberá anotar la respuesta con pluma.
- 4.- Cada página utilizada deberá llevar el nombre del alumno y el número de página que corresponda, por ejemplo 3/5 ó página 3 de 5.
- 5.- La presentación de un examen refleja la seriedad y el compromiso de un alumno con la Universidad, por lo que exámenes sucios, desordenados y sin cumplir con los lineamientos que se especifican **estarán sujetos a la deducción de 1 punto de la calificación del mismo.**

FORMULARIOS

Sólo se permitirá la utilización de formularios elaborados por el Área respectiva, o por los alumnos con autorización del profesor de la materia.

De las tareas, prácticas y exposiciones

TAREAS.

Deberán entregarse el día solicitado por el Profesor. **No habrá prorrogas** de entrega. PROYECTOS.

El proyecto se entregará de acuerdo con los lineamientos establecidos por parte del profesor, entregándose los mismos por escrito o bien cargados en plataforma Moodle.

En caso de detectar plagio, en automático se enviará al (los/las) alumno-alumna a extraordinario

PRÁCTICAS

Las prácticas se realizarán en talleres.

Trabajos de investigación

Se entregarán los trabajos de investigación de acuerdo al tema y lineamientos establecidos en plataforma Moodle, no habrá entregas extemporáneas.

En caso de detectar plagio, en automático se enviará al (los/las) alumno-alumna a extraordinario

BIBLIOGRAFÍA RECOMENDADA

Chawla, K. (2012). Composite materials: science and engineering. USA: Springer.

Callister, W. y D. Rethwisch. (2010). Materials science and engineering: an introduction. USA: John Wiley & Sons.

Necati, O. (2010). Heat transfer: a basic approach. USA: McGraw-Hill.

Guser, E. et. al. (2010). Advanced materials and technologies for micro/nano-devices, sensors and actuator. USA: Springer Verlag.

Wandberg, J. (2012). Composite Materials: Fabrication handbook # 1, 2 & 3. USA: Wolfgang. (2004).

